Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396954

RESUMO

Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.


Assuntos
Calcificação Fisiológica , Calcinose , N-Acetilgalactosaminiltransferases , Osteoblastos , Animais , Feminino , Masculino , Camundongos , Calcinose/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fatores de Crescimento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Osteoblastos/metabolismo , Fósforo , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139148

RESUMO

Bcl2l1 (Bcl-XL) belongs to the Bcl-2 family, Bcl2 and Bcl2-XL are major anti-apoptotic proteins, and the apoptosis of osteoblasts is a key event for bone homeostasis. As the functions of Bcl2l1 in osteoblasts and bone homeostasis remain unclear, we generated osteoblast-specific Bcl2l1-deficient (Bcl2l1fl/flCre) mice using 2.3-kb Col1a1 Cre. Trabecular bone volume and the trabecular number were lower in Bcl2l1fl/flCre mice of both sexes than in Bcl2l1fl/fl mice. In bone histomorphometric analysis, osteoclast parameters were increased in Bcl2l1fl/flCre mice, whereas osteoblast parameters and the bone formation rate were similar to those in Bcl2l1fl/fl mice. TUNEL-positive osteoblastic cells and serum TRAP5b levels were increased in Bcl2l1fl/flCre mice. The deletion of Bcl2l1 in osteoblasts induced Tnfsf11 expression, whereas the overexpression of Bcl-XL had no effect. In a co-culture of Bcl2l1-deficient primary osteoblasts and wild-type bone-marrow-derived monocyte/macrophage lineage cells, the numbers of multinucleated TRAP-positive cells and resorption pits increased. Furthermore, serum deprivation or the deletion of Bcl2l1 in primary osteoblasts increased apoptosis and ATP levels in the medium. Therefore, the reduction in trabecular bone in Bcl2l1fl/flCre mice may be due to enhanced bone resorption through osteoblast apoptosis and the release of ATP from apoptotic osteoblasts, and Bcl2l1 may inhibit bone resorption by preventing osteoblast apoptosis.


Assuntos
Reabsorção Óssea , Osteogênese , Animais , Feminino , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Apoptose/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osso Esponjoso/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Regen Ther ; 24: 536-546, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860130

RESUMO

Vertebrates form their skeletal tissues from three distinct origins (the neural crest, paraxial mesoderm, and lateral plate mesoderm) through two distinct modes of ossification (intramembranous and endochondral ossification). Since the paraxial mesoderm generates both intramembranous and endochondral bones, it is thought to give rise to both osteoprogenitors and osteo-chondroprogenitors. However, it remains unclear what directs the paraxial mesoderm-derived cells toward these different fates in distinct skeletal elements during human skeletal development. To answer this question, we need experimental systems that recapitulate paraxial mesoderm-mediated intramembranous and endochondral ossification processes. In this study, we aimed to develop a human pluripotent stem cell (hPSC)-based system that models the human intramembranous ossification process. We found that spheroid culture of the hPSC-derived paraxial mesoderm derivatives generates osteoprogenitors or osteo-chondroprogenitors depending on stimuli. The former induced intramembranous ossification, and the latter endochondral ossification, in mouse renal capsules. Transcriptional profiling supported the notion that bone signatures were enriched in the intramembranous bone-like tissues. Thus, we developed a system that recapitulates intramembranous ossification, and that enables the induction of two distinct modes of ossification by controlling the cell fate of the hPSC-derived paraxial mesoderm derivatives.

4.
J Cell Physiol ; 238(3): 566-581, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715607

RESUMO

Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-ß signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6-19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6-19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss.


Assuntos
Osso e Ossos , Regulação para Baixo , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Osteoporose , Transdução de Sinais , Proteína Smad1 , Animais , Feminino , Masculino , Camundongos , Osso e Ossos/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Camundongos Knockout , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteogênese , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Proteína Smad1/metabolismo
5.
Regen Ther ; 21: 584-595, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475024

RESUMO

Introduction: Aging, genetic mutations, and other pathological conditions cause impairment of skeletal growth and bone metabolism, which affect activities of daily living and quality of life in all life stages. Although several drugs have been used in clinical settings and new drugs have been developed for the treatment of skeletal degenerative disorders such as osteoporosis and genetic disorders such as osteogenesis imperfecta (OI), there is clear demand for development of new drugs, especially orally available anabolic drugs that are applicable for a wide range of skeletal disorders. Methods: To identify therapeutic candidates for skeletal disorders, peptide screening was performed. To validate the identified peptides, we performed a bone histomorphometric analysis with rat bone tissues and in vitro cell proliferation assays of skeletal cells. To understand the metabolism of the peptides, we performed a biochemical analysis, followed by in vitro assays for proliferation and differentiation of skeletal cells. We examined the therapeutic efficacy of the identified peptides with several mouse models representing skeletal disorders including bone fracture, osteoporosis, and osteogenesis imperfecta. In vivo therapeutic effects of the candidate were assessed with radiological analysis and mechanical property tests. Results: We identified the egg yolk-derived functional peptide PF201. PF201 promoted in vivo bone formation in rodents and enhanced proliferation of osteoblasts and chondrocytes in vitro. D2, a metabolite of PF201, was present and circulated after digestion and absorption in the digestive tract. D2 had positive impacts on the proliferation and differentiation of mesenchymal stem cells and preosteoblasts. Oral administration of D2 accelerated bone healing in a mouse fracture model. D2 also improved bone strength and fracture healing under ovariectomy-induced osteoporotic conditions in mice, and D2 showed a therapeutic effect in a mouse OI model. Conclusion: D2 is likely to be a candidate for an orally available therapeutic for a range of skeletal disorders.

6.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457191

RESUMO

Osteocytes connect with neighboring osteocytes and osteoblasts through their processes and form an osteocyte network. Shear stress on osteocytes, which is induced by fluid flow in the lacunae and canaliculi, has been proposed as an important mechanism for mechanoresponses. The lacunocanalicular structure is differentially developed in the compression and tension sides of femoral cortical bone and the compression side is more organized and has denser and thinner canaliculi. Mice with an impaired lacunocanalicular structure may be useful for evaluation of the relationship between lacunocanalicular structure and mechanoresponses, although their bone component cells are not normal. We show three examples of mice with an impaired lacunocanalicular structure. Ablation of osteocytes by diphtheria toxin caused massive osteocyte apoptosis, necrosis or secondary necrosis that occurred after apoptosis. Osteoblast-specific Bcl2 transgenic mice were found to have a reduced number of osteocyte processes and canaliculi, which caused massive osteocyte apoptosis and a completely interrupted lacunocanalicular network. Osteoblast-specific Sp7 transgenic mice were also revealed to have a reduced number of osteocyte processes and canaliculi, as well as an impaired, but functionally connected, lacunocanalicular network. Here, we show the phenotypes of these mice in physiological and unloaded conditions and deduce the relationship between lacunocanalicular structure and mechanoresponses.


Assuntos
Osso e Ossos , Osteócitos , Animais , Camundongos , Camundongos Transgênicos , Necrose , Osteoblastos , Estresse Mecânico
7.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328592

RESUMO

The relationship of lacunocanalicular network structure and mechanoresponse has not been well studied. The lacunocanalicular structures differed in the compression and tension sides, in the regions, and in genders in wild-type femoral cortical bone. The overexpression of Sp7 in osteoblasts resulted in thin and porous cortical bone with increased osteoclasts and apoptotic osteocytes, and the number of canaliculi was half of that in the wild-type mice, leading to a markedly impaired lacunocanalicular network. To investigate the response to unloading, we performed tail suspension. Unloading reduced trabecular and cortical bone in the Sp7 transgenic mice due to reduced bone formation. Sost-positive osteocytes increased by unloading on the compression side, but not on the tension side of cortical bone in the wild-type femurs. However, these differential responses were lost in the Sp7 transgenic femurs. Serum Sost increased in the Sp7 transgenic mice, but not in the wild-type mice. Unloading reduced the Col1a1 and Bglap/Bglap2 expression in the Sp7 transgenic mice but not the wild-type mice. Thus, Sp7 transgenic mice with the impaired lacunocanalicular network induced Sost expression by unloading but lost the differential regulation in the compression and tension sides, and the mice failed to restore bone formation during unloading, implicating the relationship of lacunocanalicular network structure and the regulation of bone formation in mechanoresponse.


Assuntos
Reabsorção Óssea , Osteócitos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fator de Transcrição Sp7/metabolismo
8.
Angle Orthod ; 92(4): 547-554, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35130346

RESUMO

OBJECTIVES: To examine whether lithium suppresses orthodontically induced root resorption (OIRR) via two mechanisms (prevention of hyalinization in periodontal tissue and suppression of odontoclasts) and to investigate the changes in the periodontal tissue and alveolar bone, focusing on the appearance of cell death, hyalinization, and odontoclasts. MATERIALS AND METHODS: The maxillary first molars of 10-week-old male Wistar rats were moved mesially by a closed-coil spring for 14 days. Lithium chloride (LiCl; 0.64 mM/kg) or saline (control) was administered intraperitoneally daily. Tooth movements were measured using micro-computed tomography. Appearances of cell death, hyalinization, and odontoclasts were evaluated by histological analysis. RESULTS: OIRR observed on day 14 in the control group was suppressed strongly by LiCl administration. Apoptotic cells observed on day 1 in the compression area were gradually diminished on days 2 and 3 and transformed to hyalinization tissue in the control group. LiCl administration remarkably suppressed this cell death and subsequent hyalinization. Also, the appearance of odontoclasts in the compression area observed on day 7 was significantly suppressed by LiCl administration. Accordingly, these degenerative processes to OIRR were suppressed substantially by LiCl treatment. CONCLUSIONS: Lithium reduces OIRR through the suppression of periodontal ligament cell death, hyalinization, and odontoclast formation.


Assuntos
Reabsorção da Raiz , Animais , Morte Celular , Lítio/metabolismo , Lítio/farmacologia , Masculino , Osteoclastos/patologia , Ratos , Ratos Wistar , Reabsorção da Raiz/etiologia , Reabsorção da Raiz/metabolismo , Reabsorção da Raiz/prevenção & controle , Técnicas de Movimentação Dentária/efeitos adversos , Técnicas de Movimentação Dentária/métodos , Microtomografia por Raio-X/métodos
9.
Bull Tokyo Dent Coll ; 62(3): 171-180, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34393144

RESUMO

Bone marrow is the principal site of hematopoiesis in mammals. Amphibians were the first phylogenetic group in vertebrates to acquire bone marrow, but the distribution of hematopoietic cells in the bone marrow of the primitive frog, Xenopus laevis (X. laevis) has not been well documented. The purpose of this study was to perform a histological investigation of the distribution of hematopoietic cells in femoral bone marrow at various stages of development in X. laevis. Hematopoietic cells showed preferential distribution on the endosteal surface of cortical bone throughout all stages of development, from tadpole to aged frog. In mature frogs, hematopoietic cells appeared at the boundary between the epiphysis and the bone marrow. The distribution of hematopoietic cells around the blood vessels was limited to a small number of vessels in the bone marrow. Abundant adipose tissue was observed in the bone marrow cavity from the tadpole stage to the mature frog stage. Hematopoietic cells showed preferential distribution in a belt-like fashion on the surface of newly-formed bones in a bone regeneration model in the diaphysis of X. laevis. These results indicate that the distribution of hematopoietic cells in bone marrow in X. laevis differs from that in mammals, and that the bone marrow of X. laevis constitutes a useful model for exploring the mechanism underlying the phylogenetic differentiation of bone marrow hematopoiesis.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Animais , Hematopoese , Filogenia , Xenopus laevis
10.
PLoS Genet ; 16(11): e1009169, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253203

RESUMO

Chondrocytes proliferate and mature into hypertrophic chondrocytes. Vascular invasion into the cartilage occurs in the terminal hypertrophic chondrocyte layer, and terminal hypertrophic chondrocytes die by apoptosis or transdifferentiate into osteoblasts. Runx2 is essential for osteoblast differentiation and chondrocyte maturation. Runx2-deficient mice are composed of cartilaginous skeletons and lack the vascular invasion into the cartilage. However, the requirement of Runx2 in the vascular invasion into the cartilage, mechanism of chondrocyte transdifferentiation to osteoblasts, and its significance in bone development remain to be elucidated. To investigate these points, we generated Runx2fl/flCre mice, in which Runx2 was deleted in hypertrophic chondrocytes using Col10a1 Cre. Vascular invasion into the cartilage was similarly observed in Runx2fl/fl and Runx2fl/flCre mice. Vegfa expression was reduced in the terminal hypertrophic chondrocytes in Runx2fl/flCre mice, but Vegfa was strongly expressed in osteoblasts in the bone collar, suggesting that Vegfa expression in bone collar osteoblasts is sufficient for vascular invasion into the cartilage. The apoptosis of terminal hypertrophic chondrocytes was increased and their transdifferentiation was interrupted in Runx2fl/flCre mice, leading to lack of primary spongiosa and osteoblasts in the region at E16.5. The osteoblasts appeared in this region at E17.5 in the absence of transdifferentiation, and the number of osteoblasts and the formation of primary spongiosa, but not secondary spongiosa, reached to levels similar those in Runx2fl/fl mice at birth. The bone structure and volume and all bone histomophometric parameters were similar between Runx2fl/fl and Runx2fl/flCre mice after 6 weeks of age. These findings indicate that Runx2 expression in terminal hypertrophic chondrocytes is not required for vascular invasion into the cartilage, but is for their survival and transdifferentiation into osteoblasts, and that the transdifferentiation is necessary for trabecular bone formation in embryonic and neonatal stages, but not for acquiring normal bone structure and volume in young and adult mice.


Assuntos
Transdiferenciação Celular/genética , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/fisiologia , Osteogênese/genética , Fatores Etários , Animais , Apoptose/genética , Osso Esponjoso/citologia , Osso Esponjoso/embriologia , Osso Esponjoso/crescimento & desenvolvimento , Cartilagem/irrigação sanguínea , Cartilagem/citologia , Cartilagem/metabolismo , Sobrevivência Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Periósteo/citologia , Periósteo/embriologia , Periósteo/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
PLoS Genet ; 16(5): e1008586, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463816

RESUMO

The strength of bone depends on bone quantity and quality. Osteocalcin (Ocn) is the most abundant noncollagenous protein in bone and is produced by osteoblasts. It has been previously claimed that Ocn inhibits bone formation and also functions as a hormone to regulate insulin secretion in the pancreas, testosterone synthesis in the testes, and muscle mass. We generated Ocn-deficient (Ocn-/-) mice by deleting Bglap and Bglap2. Analysis of Ocn-/-mice revealed that Ocn is not involved in the regulation of bone quantity, glucose metabolism, testosterone synthesis, or muscle mass. The orientation degree of collagen fibrils and size of biological apatite (BAp) crystallites in the c-axis were normal in the Ocn-/-bone. However, the crystallographic orientation of the BAp c-axis, which is normally parallel to collagen fibrils, was severely disrupted, resulting in reduced bone strength. These results demonstrate that Ocn is required for bone quality and strength by adjusting the alignment of BAp crystallites parallel to collagen fibrils; but it does not function as a hormone.


Assuntos
Apatitas/metabolismo , Calcificação Fisiológica/genética , Metabolismo dos Carboidratos/genética , Glucose/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Osteocalcina/fisiologia , Testosterona/biossíntese , Animais , Apatitas/química , Osso e Ossos/metabolismo , Colágeno/metabolismo , Cristalização , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Tamanho do Órgão/genética , Osteoblastos/metabolismo , Osteocalcina/genética , Osteogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
13.
Sci Rep ; 7(1): 4928, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694469

RESUMO

Bone marrow mesenchymal stem and progenitor cells (BM-MSPCs) maintain homeostasis of bone tissue by providing osteoblasts. Although several markers have been identified for labeling of MSPCs, these labeled cells still contain non-BM-MSPC populations. Studies have suggested that MSPCs are observed as leptin receptor (LepR)-positive cells, whereas osteoblasts can be classified as positive for Runx2, a master regulator for osteoblastogenesis. Here, we demonstrate, using Runx2-GFP reporter mice, that the LepR-labeled population contains Runx2-GFPlow sub-population, which possesses higher fibroblastic colony-forming units (CFUs) and mesensphere capacity, criteria for assessing stem cell activity, than the Runx2-GFP- population. In response to parathyroid hormone (PTH), a bone anabolic hormone, LepR+Runx2-GFPlow cells increase Runx2 expression and form multilayered structures near the bone surface. Subsequently, the multilayered cells express Osterix and Type I collagen α, resulting in generation of mature osteoblasts. Therefore, our results indicate that Runx2 is weakly expressed in the LepR+ population without osteoblastic commitment, and the LepR+Runx2-GFPlow stromal cells sit atop the BM stromal hierarchy.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Receptores para Leptina/genética , Animais , Biomarcadores , Diferenciação Celular , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Imunofluorescência , Expressão Gênica , Genes Reporter , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/metabolismo , Osteogênese/genética , Hormônio Paratireóideo/metabolismo , Receptores para Leptina/metabolismo
14.
J Bone Miner Res ; 31(7): 1366-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26852895

RESUMO

The Bcl2 family proteins, Bcl2 and BclXL, suppress apoptosis by preventing the release of caspase activators from mitochondria through the inhibition of Bax subfamily proteins. We reported that BCL2 overexpression in osteoblasts using the 2.3 kb Col1a1 promoter increased osteoblast proliferation, failed to reduce osteoblast apoptosis, inhibited osteoblast maturation, and reduced the number of osteocyte processes, leading to massive osteocyte death. We generated BCLXL (BCL2L1) transgenic mice using the same promoter to investigate BCLXL functions in bone development and maintenance. Bone mineral density in the trabecular bone of femurs was increased, whereas that in the cortical bone was similar to that in wild-type mice. Osteocyte process formation was unaffected and bone structures were similar to those in wild-type mice. A micro-CT analysis showed that trabecular bone volume in femurs and vertebrae and the cortical thickness of femurs were increased. A dynamic bone histomorphometric analysis revealed that the mineralizing surface was larger in trabecular bone, and the bone-formation rate was increased in cortical bone. Serum osteocalcin but not TRAP5b was increased, BrdU-positive osteoblastic cell numbers were increased, TUNEL-positive osteoblastic cell numbers were reduced, and osteoblast marker gene expression was enhanced in BCLXL transgenic mice. The three-point bending test indicated that femurs were stronger in BCLXL transgenic mice than in wild-type mice. The frequency of TUNEL-positive primary osteoblasts was lower in BCLXL transgenic mice than in wild-type mice during cultivation, and osteoblast differentiation was enhanced but depended on cell density, indicating that enhanced differentiation was mainly owing to reduced apoptosis. Increased trabecular and cortical bone volumes were maintained during aging in male and female mice. These results indicate that BCLXL overexpression in osteoblasts increased the trabecular and cortical bone volumes with normal structures and maintained them majorly by preventing osteoblast apoptosis, implicating BCLXL as a therapeutic target of osteoporosis. © 2016 American Society for Bone and Mineral Research.


Assuntos
Apoptose , Densidade Óssea , Osso Cortical/metabolismo , Regulação da Expressão Gênica , Osteoblastos/metabolismo , Osteoporose/metabolismo , Proteína bcl-X/biossíntese , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Camundongos , Camundongos Transgênicos , Osteoblastos/patologia , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Osteoporose/patologia , Microtomografia por Raio-X , Proteína bcl-X/genética
15.
Cell Tissue Res ; 361(2): 457-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25707508

RESUMO

Runx2 is an essential transcription factor for osteoblast and odontoblast differentiation and the terminal differentiation of chondrocytes. We have previously shown that the terminal differentiation of odontoblasts is inhibited in Runx2 transgenic {Tg(Col1a1-Runx2)} mice under the control of the 2.3-kb Col1a1 promoter, which directs the transgene expression to osteoblasts and odontoblasts. Odontoblasts show severe reductions in Dspp and nestin expression and lose their characteristic polarized morphology, including a long process extending to dentin, in Tg(Col1a1-Runx2) mice. We study the molecular mechanism of odontoblast morphogenesis by comparing gene expression in the molars of wild-type and Tg(Col1a1-Runx2) mice, focusing on cytoskeleton-related genes. Using microarray, we found that the gene expression of microtubule-associated protein tau (Mapt), a neuronal phosphoprotein with important roles in neuronal biology and microtubule dynamics and assembly, was high in wild-type molars but severely reduced in Tg(Col1a1-Runx2) molars. Immunohistochemical analysis revealed that Mapt was specifically expressed in terminally differentiated odontoblasts including their processes in wild-type molars but its expression was barely detectable in Tg(Col1a1-Runx2) molars. Double-staining of Mapt and Runx2 showed their reciprocal expression in odontoblasts. Mapt and tubulin co-localized in odontoblasts in wild-type molars. Immunoelectron microscopic analysis demonstrated Mapt lying around α-tubulin-positive filamentous structures in odontoblast processes. Thus, Mapt is a useful marker for terminally differentiated odontoblasts and might play an important role in odontoblast morphogenesis.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação para Baixo , Odontoblastos/citologia , Proteínas tau/genética , Animais , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/análise , Camundongos Transgênicos , Odontoblastos/metabolismo , Odontoblastos/patologia , Odontogênese , Transcriptoma , Tubulina (Proteína)/análise , Proteínas tau/análise
16.
J Bone Miner Res ; 30(4): 706-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25262822

RESUMO

Runx family proteins, Runx1, Runx2, and Runx3, play important roles in skeletal development. Runx2 is required for osteoblast differentiation and chondrocyte maturation, and haplodeficiency of RUNX2 causes cleidocranial dysplasia, which is characterized by open fontanelles and sutures and hypoplastic clavicles. Cbfb forms a heterodimer with Runx family proteins and enhances their DNA-binding capacity. Cbfb-deficient (Cbfb(-/-) ) mice die at midgestation because of the lack of fetal liver hematopoiesis. We previously reported that the partial rescue of hematopoiesis in Cbfb(-/-) mice revealed the requirement of Cbfb in skeletal development. However, the precise functions of Cbfb in skeletal development still remain to be clarified. We deleted Cbfb in mesenchymal cells giving rise to both chondrocyte and osteoblast lineages by mating Cbfb(fl/fl) mice with Dermo1 Cre knock-in mice. Cbfb(fl/fl/Cre) mice showed dwarfism, both intramembranous and endochondral ossifications were retarded, and chondrocyte maturation and proliferation and osteoblast differentiation were inhibited. The differentiation of chondrocytes and osteoblasts were severely inhibited in vitro, and the reporter activities of Ihh, Col10a1, and Bglap2 promoter constructs were reduced in Cbfb(fl/fl/Cre) chondrocytes or osteoblasts. The proteins of Runx1, Runx2, and Runx3 were reduced in the cartilaginous limb skeletons and calvariae of Cbfb(fl/fl/Cre) embryos compared with the respective protein in the respective tissue of Cbfb(fl/fl) embryos at E15.5, although the reduction of Runx2 protein in calvariae was much milder than that in cartilaginous limb skeletons. All of the Runx family proteins were severely reduced in Cbfb(fl/fl/Cre) primary osteoblasts, and Runx2 protein was less stable in Cbfb(fl/fl/Cre) osteoblasts than Cbfb(fl/fl) osteoblasts. These findings indicate that Cbfb is required for skeletal development by regulating chondrocyte differentiation and proliferation and osteoblast differentiation; that Cbfb plays an important role in the stabilization of Runx family proteins; and that Runx2 protein stability is less dependent on Cbfb in calvariae than in cartilaginous limb skeletons.


Assuntos
Desenvolvimento Ósseo/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Subunidade beta de Fator de Ligação ao Core/fisiologia , Animais , Diferenciação Celular , Condrócitos/citologia , Subunidade beta de Fator de Ligação ao Core/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/citologia
17.
Clin Calcium ; 24(9): 1329-36, 2014 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-25177005

RESUMO

Glucocorticoid-induced osteoporosis is caused by the inhibition of osteoblast differentiation and induction of osteoblast and osteocyte apoptosis. Glucocorticoids inhibit osteoblast differentiation by reducing the expression of Wnt signaling proteins, osteocalcin, and AP-1. Further, glucocorticoids induce osteoblast and osteocyte apoptosis by regulating the expression of Bcl-2 family proteins. Apoptotic signaling enhances osteoblast differentiation, at least in part, through FoxO. However, FoxO is also likely to be involved in the inhibition of osteoblast differentiation by glucocorticoids.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Osteócitos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Animais , Humanos , Osteócitos/citologia
18.
J Biol Chem ; 289(38): 26584-26596, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25107907

RESUMO

Galnt3, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-D-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2(-/-) cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3(-/-) mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3(-/-) mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation.


Assuntos
Condrócitos/metabolismo , Sulfatos de Condroitina/metabolismo , Nanismo/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Agrecanas/genética , Agrecanas/metabolismo , Animais , Apoptose , Cartilagem/metabolismo , Cartilagem/patologia , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Expressão Gênica , Glicosilação , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilgalactosaminiltransferases/genética , Osteogênese , Polipeptídeo N-Acetilgalactosaminiltransferase
19.
J Bone Miner Res ; 29(9): 1960-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24692107

RESUMO

Runx2 is essential for osteoblast differentiation and chondrocyte maturation. The expression of Runx2 is the first requisite step for the lineage determination from mesenchymal stem cells to osteoblasts. Although the transcript from Runx2 distal promoter is majorly expressed in osteoblasts, the promoter failed to direct green fluorescent protein (GFP) expression to osteoblasts. To find the regulatory region, we generated GFP reporter mice driven by a bacterial artificial chromosome (BAC) of Runx2 locus, and succeeded in the reproduction of endogenous Runx2 expression. By serially deleting it, we identified a 343-bp enhancer, which directed GFP expression specifically to osteoblasts, about 30 kb upstream of the distal promoter. The sequence of the 343-bp enhancer was highly conserved among mouse, human, dog, horse, opossum, and chicken. Dlx5, Mef2c, Tcf7, Ctnnb1, Sp7, Smad1, and Sox6, which localized on the enhancer region in primary osteoblasts, synergistically upregulated the enhancer activity, whereas Msx2 downregulated the activity in mouse osteoblastic MC3T3-E1 cells. Msx2 was predominantly bound to the enhancer in mouse multipotent mesenchymal C3H10T1/2 cells, whereas Dlx5 was predominantly bound to the enhancer in MC3T3-E1 cells. Dlx5 and Mef2 directly bound to the enhancer, and the binding sites were required for the osteoblast-specific expression in mice, whereas the other factors bound to the enhancer by protein-protein interaction. The enhancer was characterized by the presence of the histone variant H2A.Z, the enrichment of histone H3 mono- and dimethylated at Lys4 and acetylated at Lys18 and Lys27, but the depletion of histone H3 trimethylated at Lys4 in primary osteoblasts. These findings indicated that the enhancer, which had typical histone modifications for enhancers, contains sufficient elements to direct Runx2 expression to osteoblasts, and that Dlx5 and Mef2, which formed an enhanceosome with Tcf7, Ctnnb1, Sp7, Smad1, and Sox6, play an essential role in the osteoblast-specific activation of the enhancer. © 2014 American Society for Bone and Mineral Research.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição MEF2/metabolismo , Osteoblastos/metabolismo , Animais , Pareamento de Bases/genética , Linhagem Celular , Imunoprecipitação da Cromatina , Cromossomos Artificiais Bacterianos/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Genes Reporter , Loci Gênicos , Proteínas de Fluorescência Verde/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Fatores de Transcrição SOX/metabolismo , Proteína Smad1/metabolismo , Fator de Transcrição Sp7 , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo
20.
Hum Mol Genet ; 23(11): 2953-67, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24436304

RESUMO

Mutations of Filamin genes, which encode actin-binding proteins, cause a wide range of congenital developmental malformations in humans, mainly skeletal abnormalities. However, the molecular mechanisms underlying Filamin functions in skeletal system formation remain elusive. In our screen to identify skeletal development molecules, we found that Cfm (Fam101) genes, Cfm1 (Fam101b) and Cfm2 (Fam101a), are predominantly co-expressed in developing cartilage and intervertebral discs (IVDs). To investigate the functional role of Cfm genes in skeletal development, we generated single knockout mice for Cfm1 and Cfm2, as well as Cfm1/Cfm2 double-knockout (Cfm DKO) mice, by targeted gene disruption. Mice with loss of a single Cfm gene displayed no overt phenotype, whereas Cfm DKO mice showed skeletal malformations including spinal curvatures, vertebral fusions and impairment of bone growth, showing that the phenotypes of Cfm DKO mice resemble those of Filamin B (Flnb)-deficient mice. The number of cartilaginous cells in IVDs is remarkably reduced, and chondrocytes are moderately reduced in Cfm DKO mice. We observed increased apoptosis and decreased proliferation in Cfm DKO cartilaginous cells. In addition to direct interaction between Cfm and Filamin proteins in developing chondrocytes, we showed that Cfm is required for the interaction between Flnb and Smad3, which was reported to regulate Runx2 expression. Furthermore, we found that Cfm DKO primary chondrocytes showed decreased cellular size and fewer actin bundles compared with those of wild-type chondrocytes. These results suggest that Cfms are essential partner molecules of Flnb in regulating differentiation and proliferation of chondryocytes and actin dynamics.


Assuntos
Cartilagem/metabolismo , Exostose Múltipla Hereditária/metabolismo , Filaminas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Coluna Vertebral/metabolismo , Animais , Apoptose , Cartilagem/anormalidades , Cartilagem/crescimento & desenvolvimento , Condrócitos/citologia , Condrócitos/metabolismo , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/fisiopatologia , Filaminas/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Coluna Vertebral/anormalidades , Coluna Vertebral/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA